Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.09.06.556547

ABSTRACT

A feature of the SARS-CoV-2 Omicron subvariants BF.5 and BF.7 that recently circulated mainly in China and Japan was the high prevalence of ORF7a: H47Y mutation. Here we evaluated the effect of this mutation on the three main functions ascribed to SARS-CoV-2 ORF7a protein. Our findings show that H47Y mutation impairs the ability of SARS-CoV-2 ORF7a to antagonize type-I interferon (IFN-I) response and to downregulate Major Histocompatibility Complex-I (MHC-I) cell surface levels, but had no effect in its anti-SERINC5 function. Overall, our results suggest that the H47Y mutation of ORF7a affects important functions of this protein resulting in changes in virus pathogenesis.

2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.22.422953

ABSTRACT

The Membrane Associated RING-CH (MARCH) proteins belong to a family of E3 ubiquitin ligases, whose main function is to remove transmembrane proteins from the plasma membrane. Recent work has shown that the human MARCH1, 2 and 8 are antiretroviral factors that target the Human Immunodeficiency virus-1 (HIV-1) envelope glycoproteins by reducing their incorporation in the budding virions. Nevertheless, the dearth of information regarding the antiviral mechanism of this family of proteins necessitates further examination. In this study, using both the human MARCH proteins and their mouse homologues, we provide a comprehensive analysis of the antiretroviral mechanism of this family of proteins. Moreover, we show that human MARCH proteins restrict to varying degrees the envelope glycoproteins of a diverse number of viruses. This report sheds light on the important antiviral function of MARCH proteins and their significance in cell intrinsic immunity.

SELECTION OF CITATIONS
SEARCH DETAIL